IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v39y2018i5p763-786.html
   My bibliography  Save this article

Change‐Point Detection in Autoregressive Models with no Moment Assumptions

Author

Listed:
  • Fumiya Akashi
  • Holger Dette
  • Yan Liu

Abstract

In this paper we consider the problem of detecting a change in the parameters of an autoregressive process where the moments of the innovation process do not necessarily exist. An empirical likelihood ratio test for the existence of a change point is proposed and its asymptotic properties are studied. In contrast to other works on change‐point tests using empirical likelihood, we do not assume knowledge of the location of the change point. In particular, we prove that the maximizer of the empirical likelihood is a consistent estimator for the parameters of the autoregressive model in the case of no change point and derive the limiting distribution of the corresponding test statistic under the null hypothesis. We also establish consistency of the new test. A nice feature of the method is the fact that the resulting test is asymptotically distribution‐free and does not require an estimate of the long‐run variance. The asymptotic properties of the test are investigated by means of a small simulation study, which demonstrates good finite‐sample properties of the proposed method.

Suggested Citation

  • Fumiya Akashi & Holger Dette & Yan Liu, 2018. "Change‐Point Detection in Autoregressive Models with no Moment Assumptions," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 763-786, September.
  • Handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:763-786
    DOI: 10.1111/jtsa.12405
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12405
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franke, Jürgen & Hefter, Mario & Herzwurm, André & Ritter, Klaus & Schwaar, Stefanie, 2022. "Adaptive quantile computation for Brownian bridge in change-point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:763-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.