IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v39y2018i5p731-747.html
   My bibliography  Save this article

Testing Separability of Functional Time Series

Author

Listed:
  • Panayiotis Constantinou
  • Piotr Kokoszka
  • Matthew Reimherr

Abstract

We derive and study a significance test for determining whether a panel of functional time series is separable. In the context of this paper, separability means that the covariance structure factors into the product of two functions, one depending only on time and the other depending only on the coordinates of the panel. Separability is a property that can dramatically improve computational efficiency by substantially reducing model complexity. It is especially useful for functional data, as it implies that the functional principal components are the same for each member of the panel. However, such an assumption must be verified before proceeding with further inference. Our approach is based on functional norm differences and provides a test with well‐controlled size and high power. We establish our procedure quite generally, allowing one to test separability of autocovariances as well. In addition to an asymptotic justification, our methodology is validated by a simulation study. It is applied to functional panels of particulate pollution and stock market data.

Suggested Citation

  • Panayiotis Constantinou & Piotr Kokoszka & Matthew Reimherr, 2018. "Testing Separability of Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(5), pages 731-747, September.
  • Handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:731-747
    DOI: 10.1111/jtsa.12302
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jtsa.12302
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jtsa.12302?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:39:y:2018:i:5:p:731-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.