IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v29y2008i1p51-73.html
   My bibliography  Save this article

Rank‐based estimation for autoregressive moving average time series models

Author

Listed:
  • Beth Andrews

Abstract

. We establish asymptotic normality and consistency for rank‐based estimators of autoregressive‐moving average model parameters. The estimators are obtained by minimizing a rank‐based residual dispersion function similar to the one given by L.A. Jaeckel [Ann. Math. Stat. Vol. 43 (1972) 1449–1458]. These estimators can have the same asymptotic efficiency as maximum likelihood estimators and are robust. The quality of the asymptotic approximations for finite samples is studied via simulation.

Suggested Citation

  • Beth Andrews, 2008. "Rank‐based estimation for autoregressive moving average time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 51-73, January.
  • Handle: RePEc:bla:jtsera:v:29:y:2008:i:1:p:51-73
    DOI: 10.1111/j.1467-9892.2007.00545.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2007.00545.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2007.00545.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Hallin & D. La Vecchia & H. Liu, 2022. "Center-Outward R-Estimation for Semiparametric VARMA Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
    2. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    3. Marc Hallin & Davide La Vecchia, 2014. "Semiparametrically Efficient R-Estimation for Dynamic Location-Scale Models," Working Papers ECARES ECARES 2014-45, ULB -- Universite Libre de Bruxelles.
    4. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    5. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Karl B. Gregory & Soumendra N. Lahiri & Daniel J. Nordman, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 442-461, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:29:y:2008:i:1:p:51-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.