IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v26y2005i3p371-397.html
   My bibliography  Save this article

Estimation of Nonparametric Autoregressive Time Series Models Under Dynamical Constraints

Author

Listed:
  • R. J. Biscay
  • Marc Lavielle
  • Carenne Ludeña

Abstract

. A method is introduced to estimate nonparametric autoregressive models under the additional constraint that its regression function has a stable cycle. It is based on a penalty approach that chooses a series expansion approximation taking into account both goodness‐of‐fit and fulfillment of the constraint. Consistency of the proposed estimator is obtained under general hypothesis. Feasibility and effective performance of the introduced method are studied through simulated examples and electro‐encephalographic data collected from a subject suffering from epilepsy.

Suggested Citation

  • R. J. Biscay & Marc Lavielle & Carenne Ludeña, 2005. "Estimation of Nonparametric Autoregressive Time Series Models Under Dynamical Constraints," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(3), pages 371-397, May.
  • Handle: RePEc:bla:jtsera:v:26:y:2005:i:3:p:371-397
    DOI: 10.1111/j.1467-9892.2004.00407.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2004.00407.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2004.00407.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    2. Wolfgang Härdle & Helmut Lütkepohl & Rong Chen, 1997. "A Review of Nonparametric Time Series Analysis," International Statistical Review, International Statistical Institute, vol. 65(1), pages 49-72, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tierney, Heather L.R., 2011. "Real-time data revisions and the PCE measure of inflation," Economic Modelling, Elsevier, vol. 28(4), pages 1763-1773, July.
    2. Tierney, Heather L.R., 2011. "Forecasting and tracking real-time data revisions in inflation persistence," MPRA Paper 34439, University Library of Munich, Germany.
    3. Liu, Xialu & Xiao, Han & Chen, Rong, 2016. "Convolutional autoregressive models for functional time series," Journal of Econometrics, Elsevier, vol. 194(2), pages 263-282.
    4. Park, Jin-Hong & Bandyopadhyay, Dipankar & Letourneau, Elizabeth, 2014. "Examining deterrence of adult sex crimes: A semi-parametric intervention time-series approach," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 198-207.
    5. Xialu Liu & Zongwu Cai & Rong Chen, 2015. "Functional coefficient seasonal time series models with an application of Hawaii tourism data," Computational Statistics, Springer, vol. 30(3), pages 719-744, September.
    6. Liu, Jun M. & Chen, Rong & Yao, Qiwei, 2010. "Nonparametric transfer function models," Journal of Econometrics, Elsevier, vol. 157(1), pages 151-164, July.
    7. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    8. Liu, Jun M. & Chen, Rong & Yao, Qiwei, 2010. "Nonparametric transfer function models," LSE Research Online Documents on Economics 28868, London School of Economics and Political Science, LSE Library.
    9. Jin-Hong Park, 2012. "Nonparametric approach to intervention time series modeling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1397-1408, December.
    10. De Gooijer, Jan G. & Ray, Bonnie K., 2003. "Modeling vector nonlinear time series using POLYMARS," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 73-90, February.
    11. Herwartz, H. & Xu, F., 2010. "A functional coefficient model view of the Feldstein-Horioka puzzle," Journal of International Money and Finance, Elsevier, vol. 29(1), pages 37-54, February.
    12. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    13. Delgado, Michael S. & McCloud, Nadine & Kumbhakar, Subal C., 2014. "A generalized empirical model of corruption, foreign direct investment, and growth," Journal of Macroeconomics, Elsevier, vol. 42(C), pages 298-316.
    14. Wong, Heung & Ip, Wai-cheung & Zhang, Riquan, 2008. "Varying-coefficient single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1458-1476, January.
    15. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    16. E. Zacharias & T. Stengos, 2006. "Intertemporal pricing and price discrimination: a semiparametric hedonic analysis of the personal computer market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 371-386.
    17. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    18. Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
    19. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    20. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:26:y:2005:i:3:p:371-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.