IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v23y2002i4p487-501.html
   My bibliography  Save this article

Deconvolution of fractional brownian motion

Author

Listed:
  • VLADAS PIPIRAS
  • MURAD S. TAQQU

Abstract

We show that a fractional Brownian motion with H′∈(0,1) can be represented as an explicit transformation of a fractional Brownian motion with index H ∈(0,1). In particular, when H′=½, we obtain a deconvolution formula (or autoregressive representation) for fractional Brownian motion. We work both in the `time domain' and the `spectral domain' and contrast the advantages of one domain over the other.

Suggested Citation

  • Vladas Pipiras & Murad S. Taqqu, 2002. "Deconvolution of fractional brownian motion," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(4), pages 487-501, July.
  • Handle: RePEc:bla:jtsera:v:23:y:2002:i:4:p:487-501
    DOI: 10.1111/1467-9892.00274
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00274
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harms, Philipp & Stefanovits, David, 2019. "Affine representations of fractional processes with applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1185-1228.
    2. Jost, Céline, 2006. "Transformation formulas for fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1341-1357, October.
    3. Davidson, James & Hashimzade, Nigar, 2009. "Representation And Weak Convergence Of Stochastic Integrals With Fractional Integrator Processes," Econometric Theory, Cambridge University Press, vol. 25(6), pages 1589-1624, December.
    4. Biagini, Francesca & Fink, Holger & Klüppelberg, Claudia, 2013. "A fractional credit model with long range dependent default rate," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1319-1347.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:23:y:2002:i:4:p:487-501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.