IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v20y1999i6p605-618.html
   My bibliography  Save this article

Inverse Gaussian Autoregressive Models

Author

Listed:
  • B. Abraham
  • N. Balakrishna

Abstract

A first‐order autoregressive process with one‐dimensional inverse Gaussian marginals is introduced. The innovation distributions are obtained in certain special cases. The unknown parameters are estimated using different methods and these estimators are shown to be consistent and asymptotically normal. Performance of the estimators is discussed using simulation experiments.

Suggested Citation

  • B. Abraham & N. Balakrishna, 1999. "Inverse Gaussian Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(6), pages 605-618, November.
  • Handle: RePEc:bla:jtsera:v:20:y:1999:i:6:p:605-618
    DOI: 10.1111/1467-9892.00161
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00161
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    2. Preve, Daniel, 2015. "Linear programming-based estimators in nonnegative autoregression," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 225-234.
    3. Alice B. V. Mello & Maria C. S. Lima & Abraão D. C. Nascimento, 2022. "A notable Gamma‐Lindley first‐order autoregressive process: An application to hydrological data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    4. D. Moriña & P. Puig & J. Valero, 2015. "A characterization of the innovations of first order autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(2), pages 219-225, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:20:y:1999:i:6:p:605-618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.