IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v20y1999i5p565-577.html
   My bibliography  Save this article

Long‐Memory Errors in Time Series Regressions with a Unit Root

Author

Listed:
  • Diego Lubian

Abstract

This paper is concerned with estimation and inference in univariate time series regression with a unit root when the error sequence exhibits long‐range temporal dependence. We consider generating mechanisms for the unit root process which include models with or without a drift term and we study the limit behavior of least squares statistics in regression models without drift and trend, with drift but no time trend, and with drift and time trend. We derive the limit distribution and rate of convergence of the ordinary least squares (OLS) estimator of the unit root, the intercept and the time trend in the three regression models and for the two different data‐generating processes. The limiting distributions for the OLS estimator differ from those obtained under the hypothesis of weakly dependent errors not only in terms of the limiting process involved but also in terms of functional form. Further, we characterize the asymptotic behavior of both the t statistics for testing the unit root hypothesis and the t statistic for the intercept and time trend coefficients. We find that t ratios either diverge to infinity or collapse to zero. The limiting behavior of Phillips's Zα and Zt semiparametric corrections is also analyzed and found to be similar to that of standard Dickey– Fuller tests. Our results indicate that misspecification of the temporal dependence features of the error sequence produces major effects on the asymptotic distribution of estimators and t ratios and suggest that alternative approaches might be more suited to testing for a unit root in time series regression.

Suggested Citation

  • Diego Lubian, 1999. "Long‐Memory Errors in Time Series Regressions with a Unit Root," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 565-577, September.
  • Handle: RePEc:bla:jtsera:v:20:y:1999:i:5:p:565-577
    DOI: 10.1111/1467-9892.00158
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00158
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian M. Hafner & Arie Preminger, 2016. "The effect of additive outliers on a fractional unit root test," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 401-420, October.
    2. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2003. "Testing for a Unit Root Against Fractional Alternatives in the Presence of a Maintained Trend," Working Papers 29, Barcelona School of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:20:y:1999:i:5:p:565-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.