IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v20y1999i2p155-171.html
   My bibliography  Save this article

Aggregation and Disaggregation of Structural Time Series Models

Author

Listed:
  • Luiz K. Hotta
  • Klaus L. Vasconcellos

Abstract

The aggregation/disaggregation problem has been widely studied in the time series literature. Some main issues related to this problem are modelling, prediction and robustness to outliers. In this paper we look at the modelling problem with particular interest in the local level and local trend structural time series models together with their corresponding ARIMA(0, 1, 1) and ARIMA(0, 2, 2) representations. Given an observed time series that can be expressed by a structural or autoregressive integrated moving‐average (ARIMA) model, we derive the necessary and sufficient conditions under which the aggregate and/or disaggregate series can be expressed by the same class of model. Harvey's cycle and seasonal components models (Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press, 1989) are also briefly discussed. Systematic sampling of structural and ARIMA models is also discussed.

Suggested Citation

  • Luiz K. Hotta & Klaus L. Vasconcellos, 1999. "Aggregation and Disaggregation of Structural Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(2), pages 155-171, March.
  • Handle: RePEc:bla:jtsera:v:20:y:1999:i:2:p:155-171
    DOI: 10.1111/1467-9892.00131
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00131
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Sbrana & Andrea Silvestrini, 2012. "Temporal aggregation of cyclical models with business cycle applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 93-107, March.
    2. Bu Hyoung Lee, 2022. "Bootstrap Prediction Intervals of Temporal Disaggregation," Stats, MDPI, vol. 5(1), pages 1-13, February.
    3. Baoline Chen, 2007. "An Empirical Comparison of Methods for Temporal Distribution and Interpolation at the National Accounts," BEA Papers 0077, Bureau of Economic Analysis.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:20:y:1999:i:2:p:155-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.