IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v18y1997i4p429-446.html
   My bibliography  Save this article

Multivariate modelling of the autoregressive random variance process

Author

Listed:
  • Mike K. P. So
  • W. K. Li
  • K. Lam

Abstract

The autoregressive random variance (ARV) model proposed by Taylor (Financial returns modelled by the product of two stochastic processes, a study of daily sugar prices 1961–79. In Time Series Analysis: Theory and Practice 1 (ed. O. D. Anderson). Amsterdam: North‐Holland, 1982, pp. 203–26) is useful in modelling stochastic changes in the variance structure of a time series. In this paper we focus on a general multivariate ARV model. A traditional EM algorithm is derived as the estimation method. The proposed EM approach is simple to program, computationally efficient and numerically well behaved. The asymptotic variance‐‐covariance matrix can be easily computed as a by‐product using a well‐kno wn asymptotic result for extremum estimators. A result that is of interest in itself is that the dimension of the augmented state space form used in computing the variance–covariance matrix can be shown to be greatly reduced, resulting in greater computational efficiency . The multivariate ARV model considered here is useful in studying the lead–lag (causality) relationship of the variance structure across different time series. As an example, the leading effect of Thailand on Malaysia in terms of vari ance changes in the stock indices is demonstrated.

Suggested Citation

  • Mike K. P. So & W. K. Li & K. Lam, 1997. "Multivariate modelling of the autoregressive random variance process," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(4), pages 429-446, July.
  • Handle: RePEc:bla:jtsera:v:18:y:1997:i:4:p:429-446
    DOI: 10.1111/1467-9892.00060
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00060
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. So, Mike K.P. & Kwok, Susanna W.Y., 2006. "A multivariate long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 450-464.
    2. Mike So & K. Lam & W. K. Li, 1999. "Forecasting exchange rate volatility using autoregressive random variance model," Applied Financial Economics, Taylor & Francis Journals, vol. 9(6), pages 583-591.
    3. Ben Rejeb, Aymen & Arfaoui, Mongi, 2016. "Financial market interdependencies: A quantile regression analysis of volatility spillover," Research in International Business and Finance, Elsevier, vol. 36(C), pages 140-157.
    4. McCausland, William & Miller, Shirley & Pelletier, Denis, 2021. "Multivariate stochastic volatility using the HESSIAN method," Econometrics and Statistics, Elsevier, vol. 17(C), pages 76-94.
    5. So, Mike K.P. & Choi, C.Y., 2008. "A multivariate threshold stochastic volatility model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 306-317.
    6. Fong, P.W. & Li, W.K. & An, Hong-Zhi, 2006. "A simple multivariate ARCH model specified by random coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1779-1802, December.
    7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    8. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    9. Benjamin Poignard & Manabu Asai, 2023. "High‐dimensional sparse multivariate stochastic volatility models," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 4-22, January.
    10. Aymen Ben Rejeb & Adel Boughrara, 2015. "Financial integration in emerging market economies: Effects on volatility transmission and contagion," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 15(3), pages 161-179, September.
    11. Eric S. Fung & Kin Lam & Tak-Kuen Siu & Wing-Keung Wong, 2011. "A Pseudo-Bayesian Model for Stock Returns In Financial Crises," JRFM, MDPI, vol. 4(1), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:18:y:1997:i:4:p:429-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.