IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v15y1994i3p303-311.html
   My bibliography  Save this article

Asymptotic Efficiency Of The Sample Covariances In A Gaussian Stationary Process

Author

Listed:
  • Yoshihide Kakizawa
  • Masanobu Taniguchi

Abstract

. This paper deals with the asymptotic efficiency of the sample autocovariances of a Gaussian stationary process. The asymptotic variance of the sample autocovariances and the Cramer–Rao bound are expressed as the integrals of the spectral density and its derivative. We say that the sample autocovariances are asymptotically efficient if the asymptotic variance and the Cramer–Rao bound are identical. In terms of the spectral density we give a necessary and sufficient condition that they are asymptotically efficient. This condition is easy to check for various spectra.

Suggested Citation

  • Yoshihide Kakizawa & Masanobu Taniguchi, 1994. "Asymptotic Efficiency Of The Sample Covariances In A Gaussian Stationary Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(3), pages 303-311, May.
  • Handle: RePEc:bla:jtsera:v:15:y:1994:i:3:p:303-311
    DOI: 10.1111/j.1467-9892.1994.tb00195.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.1994.tb00195.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.1994.tb00195.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okui Ryo, 2014. "Asymptotically Unbiased Estimation of Autocovariances and Autocorrelations with Panel Data in the Presence of Individual and Time Effects," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 129-181, July.
    2. Hiroshi Shiraishi & Masanobu Taniguchi, 2008. "Statistical estimation of optimal portfolios for non-Gaussian dependent returns of assets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 193-215.
    3. Alessandra Luati & Francesca Papagni & Tommaso Proietti, 2021. "Efficient Nonparametric Estimation of Generalized Autocovariances," CEIS Research Paper 515, Tor Vergata University, CEIS, revised 14 Oct 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:15:y:1994:i:3:p:303-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.