IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i4p906-931.html
   My bibliography  Save this article

Improving cardio‐mechanic inference by combining in vivo strain data with ex vivo volume–pressure data

Author

Listed:
  • Alan Lazarus
  • Hao Gao
  • Xiaoyu Luo
  • Dirk Husmeier

Abstract

Cardio‐mechanic models show substantial promise for improving personalised diagnosis and disease risk prediction. However, estimating the constitutive parameters from strains extracted from in vivo cardiac magnetic resonance scans can be challenging. The reason is that circumferential strains, which are comparatively easy to extract, are not sufficiently informative to uniquely estimate all parameters, while longitudinal and radial strains are difficult to extract at high precision. In the present study, we show how cardio‐mechanic parameter inference can be improved by incorporating prior knowledge from population‐wide ex vivo volume–pressure data. Our work is based on an empirical law known as the Klotz curve. We propose and assess two alternative methodological frameworks for integrating ex vivo data via the Klotz curve into the inference framework, using both a non‐empirical and empirical prior distribution.

Suggested Citation

  • Alan Lazarus & Hao Gao & Xiaoyu Luo & Dirk Husmeier, 2022. "Improving cardio‐mechanic inference by combining in vivo strain data with ex vivo volume–pressure data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 906-931, August.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:4:p:906-931
    DOI: 10.1111/rssc.12560
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12560
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Conti & J. P. Gosling & J. E. Oakley & A. O'Hagan, 2009. "Gaussian process emulation of dynamic computer codes," Biometrika, Biometrika Trust, vol. 96(3), pages 663-676.
    2. Vinny Davies & Umberto Noè & Alan Lazarus & Hao Gao & Benn Macdonald & Colin Berry & Xiaoyu Luo & Dirk Husmeier, 2019. "Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(5), pages 1555-1576, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gross, Eitan, 2015. "Effect of environmental stress on regulation of gene expression in the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 224-235.
    2. Bozağaç, Doruk & Batmaz, İnci & Oğuztüzün, Halit, 2016. "Dynamic simulation metamodeling using MARS: A case of radar simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 69-86.
    3. Raymond K. W. Wong & Curtis B. Storlie & Thomas C. M. Lee, 2017. "A frequentist approach to computer model calibration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 635-648, March.
    4. Nott, David J. & Marshall, Lucy & Fielding, Mark & Liong, Shie-Yui, 2014. "Mixtures of experts for understanding model discrepancy in dynamic computer models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 491-505.
    5. Reichert, P. & White, G. & Bayarri, M.J. & Pitman, E.B., 2011. "Mechanism-based emulation of dynamic simulation models: Concept and application in hydrology," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1638-1655, April.
    6. Jackson Samuel E. & Vernon Ian & Liu Junli & Lindsey Keith, 2020. "Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(2), pages 1-33, April.
    7. Sophie Marque-Pucheu & Guillaume Perrin & Josselin Garnier, 2020. "An efficient dimension reduction for the Gaussian process emulation of two nested codes with functional outputs," Computational Statistics, Springer, vol. 35(3), pages 1059-1099, September.
    8. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    9. Priscilla Avegliano & Jaime Simão Sichman, 2023. "Equation-Based Versus Agent-Based Models: Why Not Embrace Both for an Efficient Parameter Calibration?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(4), pages 1-3.
    10. Mohammadi, Hossein & Challenor, Peter & Goodfellow, Marc, 2019. "Emulating dynamic non-linear simulators using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 178-196.
    11. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.
    12. Dave Higdon, 2010. "Comments on: A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 462-465, November.
    13. Yawen Guan & Christian Sampson & J. Derek Tucker & Won Chang & Anirban Mondal & Murali Haran & Deborah Sulsky, 2019. "Computer Model Calibration Based on Image Warping Metrics: An Application for Sea Ice Deformation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 444-463, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:4:p:906-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.