IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v68y2019i4p941-962.html
   My bibliography  Save this article

Data integrative Bayesian inference for mixtures of regression models

Author

Listed:
  • Mehran Aflakparast
  • Mathisca de Gunst

Abstract

Modern data collection techniques, which often produce different types of relevant information, call for new statistical learning methods that are adapted to cope with data integration. In the paper Bayesian inference is considered for mixtures of regression models with an unknown number of components, that facilitates data integration and variable selection for high dimensional data. In the approach presented, named data integrative mixture of regressions, data integration is accomplished by introducing a new data allocation scheme that summarizes additional data in the form of an informative prior on latent variables. To cope with high dimensionality, a shrinkage‐type prior is assumed on the regression parameters, and a posteriori variable selection is conducted based on Bayesian credible intervals. Posterior estimation is achieved via a Markov chain Monte Carlo algorithm. The method is validated through simulation studies and illustrated by its performance on real data.

Suggested Citation

  • Mehran Aflakparast & Mathisca de Gunst, 2019. "Data integrative Bayesian inference for mixtures of regression models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(4), pages 941-962, August.
  • Handle: RePEc:bla:jorssc:v:68:y:2019:i:4:p:941-962
    DOI: 10.1111/rssc.12346
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12346
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehran Aflakparast & Mathisca de Gunst & Wessel van Wieringen, 2020. "Analysis of Twitter data with the Bayesian fused graphical lasso," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:68:y:2019:i:4:p:941-962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.