IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v68y2019i3p641-655.html
   My bibliography  Save this article

Detecting weak dependence in computer network traffic patterns by using higher criticism

Author

Listed:
  • Matthew Price‐Williams
  • Nick Heard
  • Patrick Rubin‐Delanchy

Abstract

To perform robust statistical anomaly detection in cybersecurity, we must build realistic models of the traffic patterns within a computer network. It is therefore important to understand the dependences between the large number of routinely interacting communication pathways within such a network. Pairs of interacting nodes in any directed communication network can be modelled as point processes where events in a process indicate information being sent between two nodes. For two processes A and B denoting the interactions between two distinct pairs of computers, called edges, we wish to assess whether events in A trigger events then to occur in B. A test is introduced to detect such dependence when only a subset of the events in A exhibit a triggering effect on process B; this test will enable us to detect even weakly correlated edges within a computer network graph. Since computer network events occur as a high frequency data stream, we consider the asymptotics of this problem as the number of events goes to ∞, while the proportion exhibiting dependence goes to 0, and examine the performance of tests that are provably consistent in this framework. An example of how this method can be used to detect genuine causal dependences is provided by using real world event data from the enterprise computer network of Los Alamos National Laboratory.

Suggested Citation

  • Matthew Price‐Williams & Nick Heard & Patrick Rubin‐Delanchy, 2019. "Detecting weak dependence in computer network traffic patterns by using higher criticism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 641-655, April.
  • Handle: RePEc:bla:jorssc:v:68:y:2019:i:3:p:641-655
    DOI: 10.1111/rssc.12325
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12325
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12325?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José A. Perusquía & Jim E. Griffin & Cristiano Villa, 2022. "Bayesian Models Applied to Cyber Security Anomaly Detection Problems," International Statistical Review, International Statistical Institute, vol. 90(1), pages 78-99, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:68:y:2019:i:3:p:641-655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.