IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i3p575-598.html
   My bibliography  Save this article

Segmentation of sea current fields by cylindrical hidden Markov models: a composite likelihood approach

Author

Listed:
  • Monia Ranalli
  • Francesco Lagona
  • Marco Picone
  • Enrico Zambianchi

Abstract

Motivated by segmentation issues in studies of sea current circulation, we describe a hidden Markov random field for the analysis of spatial cylindrical data, i.e. bivariate spatial series of angles and intensities. The model is based on a mixture of cylindrical densities, whose parameters vary across space according to a latent Markov field. It enables segmentation of the data within a finite number of latent classes that represent the conditional distributions of the data under specific environmental conditions, simultaneously accounting for unobserved heterogeneity and spatial auto‐correlation. Further, it parsimoniously accommodates specific features of environmental cylindrical data, such as circular–linear correlation, multimodality and skewness. Because of the numerical intractability of the likelihood function, estimation of the parameters is based on composite likelihood methods and essentially reduces to a computationally efficient expectation–maximization algorithm that iteratively alternates the maximization of a weighted composite likelihood function with weights updating. These methods are tested on simulations and exploited to segment the sea surface of the Gulf of Naples by means of meaningful circulation regimes.

Suggested Citation

  • Monia Ranalli & Francesco Lagona & Marco Picone & Enrico Zambianchi, 2018. "Segmentation of sea current fields by cylindrical hidden Markov models: a composite likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(3), pages 575-598, April.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:3:p:575-598
    DOI: 10.1111/rssc.12240
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12240
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    2. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:3:p:575-598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.