IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i1p55-81.html
   My bibliography  Save this article

Domain‐selective functional analysis of variance for supervised statistical profile monitoring of signal data

Author

Listed:
  • Alessia Pini
  • Simone Vantini
  • Bianca Maria Colosimo
  • Marco Grasso

Abstract

In many applications, process monitoring has to deal with functional responses, which are also known as profile data. In these scenarios, a relevant industrial problem consists of detecting faults by combining supervised learning with functional data analysis and statistical process monitoring. Supervised learning is usually applied to the whole signal domain, with the aim of discovering the features that are affected by the faults of interest. We explore a different perspective, which consists of performing supervised learning to select inferentially the parts of the signal data that are more informative in terms of underlying fault factors. The procedure is based on a non‐parametric domain‐selective functional analysis of variance and allows us to identify the specific subintervals where the profile is sensitive to process changes. Benefits achieved by coupling the proposed approach with profile monitoring are highlighted by using a simulation study. We show how applying profile monitoring only to the identified subintervals can reduce the time to detect the out‐of‐control state of the process. To illustrate its potential in industrial applications, the procedure is applied to remote laser welding, where the main aim is monitoring the gap between the welded plates through the observation of the emission spectra of the welded material.

Suggested Citation

  • Alessia Pini & Simone Vantini & Bianca Maria Colosimo & Marco Grasso, 2018. "Domain‐selective functional analysis of variance for supervised statistical profile monitoring of signal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(1), pages 55-81, January.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:1:p:55-81
    DOI: 10.1111/rssc.12218
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12218
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pini, Alessia & Stamm, Aymeric & Vantini, Simone, 2018. "Hotelling’s T2 in separable Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 284-305.
    2. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:1:p:55-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.