IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v64y2015i3p469-489.html
   My bibliography  Save this article

A hybrid model for combining case–control and cohort studies in systematic reviews of diagnostic tests

Author

Listed:
  • Yong Chen
  • Yulun Liu
  • Jing Ning
  • Janice Cormier
  • Haitao Chu

Abstract

type="main" xml:id="rssc12087-abs-0001"> Systematic reviews of diagnostic tests often involve a mixture of case–control and cohort studies. The standard methods for evaluating diagnostic accuracy focus only on sensitivity and specificity and ignore the information on disease prevalence that is contained in cohort studies. Consequently, such methods cannot provide estimates of measures related to disease prevalence, such as population-averaged or overall positive and negative predictive values, which reflect the clinical utility of a diagnostic test. We propose a hybrid approach that jointly models the disease prevalence along with diagnostic test sensitivity and specificity in cohort studies, and sensitivity and specificity in case–control studies. To overcome the potential computational difficulties in the standard full likelihood inference of the hybrid model proposed, we propose an alternative inference procedure based on composite likelihood. Such composite-likelihood-based inference does not suffer computational problems and maintains high relative efficiency. In addition, it is more robust to model misspecifications compared with standard full likelihood inference. We apply our approach to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma.

Suggested Citation

  • Yong Chen & Yulun Liu & Jing Ning & Janice Cormier & Haitao Chu, 2015. "A hybrid model for combining case–control and cohort studies in systematic reviews of diagnostic tests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(3), pages 469-489, April.
  • Handle: RePEc:bla:jorssc:v:64:y:2015:i:3:p:469-489
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2015.64.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ito, Tsubasa & Sugasawa, Shonosuke, 2021. "Improved confidence regions in meta-analysis of diagnostic test accuracy," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:64:y:2015:i:3:p:469-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.