IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v63y2014i3p467-482.html
   My bibliography  Save this article

Statistical inference and computational efficiency for spatial infectious disease models with plantation data

Author

Listed:
  • Patrick E. Brown
  • Florencia Chimard
  • Alexander Remorov
  • Jeffrey S. Rosenthal
  • Xin Wang

Abstract

type="main" xml:id="rssc12036-abs-0001"> The paper considers data from an aphid infestation on a sugar cane plantation and illustrates the use of an individual level infectious disease model for making inference on the biological process underlying these data. The data are interval censored, and the practical issues involved with the use of Markov chain Monte Carlo algorithms with models of this sort are explored and developed. As inference for spatial infectious disease models is complex and computationally demanding, emphasis is put on a minimal parsimonious model and speed of code execution. With careful coding we can obtain highly efficient Markov chain Monte Carlo algorithms based on a simple random-walk Metropolis-within-Gibbs routine. An assessment of model fit is provided by comparing the predicted numbers of weekly infections from the data to the trajectories of epidemics simulated from the posterior distributions of model parameters. This assessment shows that the data have periods where the epidemic proceeds more slowly and more quickly than the (temporally homogeneous) model predicts.

Suggested Citation

  • Patrick E. Brown & Florencia Chimard & Alexander Remorov & Jeffrey S. Rosenthal & Xin Wang, 2014. "Statistical inference and computational efficiency for spatial infectious disease models with plantation data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(3), pages 467-482, April.
  • Handle: RePEc:bla:jorssc:v:63:y:2014:i:3:p:467-482
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2014.63.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Neal & Fei Xiang, 2017. "Collapsing of Non-centred Parameterized MCMC Algorithms with Applications to Epidemic Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 81-96, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:63:y:2014:i:3:p:467-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.