IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v63y2014i3p445-466.html
   My bibliography  Save this article

Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models

Author

Listed:
  • Xiaobi Huang
  • Michael R. Elliott
  • Siobán D. Harlow

Abstract

type="main" xml:id="rssc12044-abs-0001"> As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to model jointly both the mean and the variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery and failure to report. We integrate multiple imputation and time-to-event modelling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women's menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way towards increasing use of joint mean–variance models to predict health outcomes and to understand disease processes better.

Suggested Citation

  • Xiaobi Huang & Michael R. Elliott & Siobán D. Harlow, 2014. "Modelling menstrual cycle length and variability at the approach of menopause by using hierarchical change point models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(3), pages 445-466, April.
  • Handle: RePEc:bla:jorssc:v:63:y:2014:i:3:p:445-466
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2014.63.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuling Liu & Amita K. Manatunga & Limin Peng & Michele Marcus, 2017. "A joint modeling approach for multivariate survival data with random length," Biometrics, The International Biometric Society, vol. 73(2), pages 666-677, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:63:y:2014:i:3:p:445-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.