IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v63y2014i2p343-360.html
   My bibliography  Save this article

Latent variable models that account for atypical responses

Author

Listed:
  • Irini Moustaki
  • Martin Knott

Abstract

type="main" xml:id="rssc12032-abs-0001"> Responses to a set of indicators, or items, or variables are often used in social sciences for measuring unobserved constructs as attitudes. Latent variable models, which are also known as factor analysis models, are used for linking the observed responses to the latent constructs. Often, some respondents provide random responses to the items. We distinguish between two response strategies: a primary response strategy that is driven by the latent variable of interest and a secondary response strategy that can be characterized as random. We propose an extended latent variable model for binary responses that models the secondary response mechanism through a latent class model implemented as an unobserved pseudoitem. We allow for the secondary response strategy that is employed by some respondents to be a function of the latent variable of interest and covariates. Not taking into account the proportion of responses generated by secondary strategies in the data can affect parameter estimates and the goodness of fit. Covariates are used to identify the demographic characteristics of those who choose a secondary response strategy and increase the precision of model estimation. We fit our proposed model to two data sets: one from a section of the 1990 Workplace Industrial Relations Survey and one from a section of the 2007 British Social Attitudes Survey.

Suggested Citation

  • Irini Moustaki & Martin Knott, 2014. "Latent variable models that account for atypical responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 343-360, February.
  • Handle: RePEc:bla:jorssc:v:63:y:2014:i:2:p:343-360
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.2014.63.issue-2
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edison M. Choe & Jinming Zhang & Hua-Hua Chang, 2018. "Sequential Detection of Compromised Items Using Response Times in Computerized Adaptive Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 650-673, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:63:y:2014:i:2:p:343-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.