IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v62y2013i5p649-668.html
   My bibliography  Save this article

Evaluation of kinship identification systems based on short tandem repeat DNA profiles

Author

Listed:
  • Fabio Corradi
  • Federico Ricciardi

Abstract

No abstract is available for this item.

Suggested Citation

  • Fabio Corradi & Federico Ricciardi, 2013. "Evaluation of kinship identification systems based on short tandem repeat DNA profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 649-668, November.
  • Handle: RePEc:bla:jorssc:v:62:y:2013:i:5:p:649-668
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssc.12017
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. P. Dawid & J. Mortera & V. L. Pascali & D. Van Boxel, 2002. "Probabilistic Expert Systems for Forensic Inference from Genetic Markers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 577-595, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michele Boreale & Fabio Corradi, 2015. "Searching secrets rationally," Econometrics Working Papers Archive 2015_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cowell, Robert G., 2009. "Efficient maximum likelihood pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 76(4), pages 285-291.
    2. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    3. Marco Di Zio & Mauro Scanu & Lucia Coppola & Orietta Luzi & Alessandra Ponti, 2004. "Bayesian networks for imputation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 309-322, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:62:y:2013:i:5:p:649-668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.