IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v54y2005i4p781-793.html
   My bibliography  Save this article

Probabilistic feature analysis of facial perception of emotions

Author

Listed:
  • Michel Meulders
  • Paul De Boeck
  • Iven Van Mechelen
  • Andrew Gelman

Abstract

Summary. According to the hypothesis of configural encoding, the spatial relationships between the parts of the face function as an additional source of information in the facial perception of emotions. The paper analyses experimental data on the perception of emotion to investigate whether there is evidence for configural encoding in the processing of facial expressions. It is argued that analysis with a probabilistic feature model has several advantages that are not implied by, for example, a generalized linear modelling approach. First, the probabilistic feature model allows us to extract empirically the facial features that are relevant in processing the face, rather than focusing on the features that were manipulated in the experiment. Second, the probabilistic feature model allows a direct test of the hypothesis of configural encoding as it explicitly formalizes a mechanism for the way in which information about separate facial features is combined in processing the face. Third, the model allows us to account for a complex data structure while still yielding parameters that have a straightforward interpretation.

Suggested Citation

  • Michel Meulders & Paul De Boeck & Iven Van Mechelen & Andrew Gelman, 2005. "Probabilistic feature analysis of facial perception of emotions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(4), pages 781-793, August.
  • Handle: RePEc:bla:jorssc:v:54:y:2005:i:4:p:781-793
    DOI: 10.1111/j.1467-9876.2005.00515.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2005.00515.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2005.00515.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meulders, Michel & De Boeck, Paul & Realo, Anu, 2009. "The Circumplex Theory of National Pride," Working Papers 2009/41, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    2. Michel Meulders & Francis Tuerlinckx & Wolf Vanpaemel, 2013. "Constrained Multilevel Latent Class Models for the Analysis of Three-Way Three-Mode Binary Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 306-337, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:54:y:2005:i:4:p:781-793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.