IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v53y2004i1p149-162.html
   My bibliography  Save this article

Models for longitudinal data with censored changepoints

Author

Listed:
  • Christopher H. Jackson
  • Linda D. Sharples

Abstract

Summary. In longitudinal studies of biological markers, different individuals may have different underlying patterns of response. In some applications, a subset of individuals experiences latent events, causing an instantaneous change in the level or slope of the marker trajectory. The paper presents a general mixture of hierarchical longitudinal models for serial biomarkers. Interest centres both on the time of the event and on levels of the biomarker before and after the event. In observational studies where marker series are incomplete, the latent event can be modelled by a survival distribution. Risk factors for the occurrence of the event can be investigated by including covariates in the survival distribution. A combination of Gibbs, Metropolis–Hastings and reversible jump Markov chain Monte Carlo sampling is used to fit the models to serial measurements of forced expiratory volume from lung transplant recipients.

Suggested Citation

  • Christopher H. Jackson & Linda D. Sharples, 2004. "Models for longitudinal data with censored changepoints," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(1), pages 149-162, January.
  • Handle: RePEc:bla:jorssc:v:53:y:2004:i:1:p:149-162
    DOI: 10.1046/j.0035-9254.2003.05116.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1046/j.0035-9254.2003.05116.x
    Download Restriction: no

    File URL: https://libkey.io/10.1046/j.0035-9254.2003.05116.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    2. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:53:y:2004:i:1:p:149-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.