IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v50y2001i1p111-124.html
   My bibliography  Save this article

Non‐homogeneous Markov models in the analysis of survival after breast cancer

Author

Listed:
  • Rafael Pérez‐Ocón
  • Juan Eloy Ruiz‐Castro
  • M. Luz Gámiz‐Pérez

Abstract

A cohort of 300 women with breast cancer who were submitted for surgery is analysed by using a non‐homogeneous Markov process. Three states are onsidered: no relapse, relapse and death. As relapse times change over time, we have extended previous approaches for a time homogeneous model to a non omogeneous multistate process. The trends of the hazard rate functions of transitions between states increase and then decrease, showing that a changepoint can be considered. Piecewise Weibull distributions are introduced as transition intensity functions. Covariates corresponding to treatments are incorporated in the model multiplicatively via these functions. The likelihood function is built for a general model with k changepoints and applied to the data set, the parameters are estimated and life‐table and transition probabilities for treatments in different periods of time are given. The survival probability functions for different treatments are plotted and compared with the corresponding function for the homogeneous model. The survival functions for the various cohorts submitted for treatment are fitted to the mpirical survival functions.

Suggested Citation

  • Rafael Pérez‐Ocón & Juan Eloy Ruiz‐Castro & M. Luz Gámiz‐Pérez, 2001. "Non‐homogeneous Markov models in the analysis of survival after breast cancer," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 111-124.
  • Handle: RePEc:bla:jorssc:v:50:y:2001:i:1:p:111-124
    DOI: 10.1111/1467-9876.00223
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00223
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Soutinho & Luís Meira-Machado, 2022. "Methods for checking the Markov condition in multi-state survival data," Computational Statistics, Springer, vol. 37(2), pages 751-780, April.
    2. Jeffrey Kharoufeh & Steven Cox & Mark Oxley, 2013. "Reliability of manufacturing equipment in complex environments," Annals of Operations Research, Springer, vol. 209(1), pages 231-254, October.
    3. Chen, Baojiang & Zhou, Xiao-Hua, 2013. "A correlated random effects model for non-homogeneous Markov processes with nonignorable missingness," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 1-13.
    4. R. A. Hubbard & L. Y. T. Inoue & J. R. Fann, 2008. "Modeling Nonhomogeneous Markov Processes via Time Transformation," Biometrics, The International Biometric Society, vol. 64(3), pages 843-850, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:50:y:2001:i:1:p:111-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.