IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v49y2000i3p227-245.html
   My bibliography  Save this article

Simulation and extremal analysis of hurricane events

Author

Listed:
  • E. Casson
  • S. Coles

Abstract

In regions affected by tropical storms the damage caused by hurricane winds can be catastrophic. Consequently, accurate estimates of hurricane activity in such regions are vital. Unfortunately, the severity of events means that wind speed data are scarce and unreliable, even by standards which are usual for extreme value analysis. In contrast, records of atmospheric pressures are more complete. This suggests a two‐stage approach: the development of a model describing spatiotemporal patterns of wind field behaviour for hurricane events; then the simulation of such events, using meteorological climate models, to obtain a realization of associated wind speeds whose extremal characteristics are summarized. This is not a new idea, but we apply careful statistical modelling for each aspect of the model development and simulation, taking the Gulf and Atlantic coastlines of the USA as our study area. Moreover, we address for the first time the issue of spatial dependence in extremes of hurricane events, which we find to have substantial implications for regional risk assessments.

Suggested Citation

  • E. Casson & S. Coles, 2000. "Simulation and extremal analysis of hurricane events," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(3), pages 227-245.
  • Handle: RePEc:bla:jorssc:v:49:y:2000:i:3:p:227-245
    DOI: 10.1111/1467-9876.00189
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00189
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00189?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:49:y:2000:i:3:p:227-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.