IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v49y2000i1p1-18.html
   My bibliography  Save this article

Regression modelling of weighted κ by using generalized estimating equations

Author

Listed:
  • R. Gonin
  • S. R. Lipsitz
  • G. M. Fitzmaurice
  • G. Molenberghs

Abstract

In many clinical studies more than one observer may be rating a characteristic measured on an ordinal scale. For example, a study may involve a group of physicians rating a feature seen on a pathology specimen or a computer tomography scan. In clinical studies of this kind, the weighted κ coefficient is a popular measure of agreement for ordinally scaled ratings. Our research stems from a study in which the severity of inflammatory skin disease was rated. The investigators wished to determine and evaluate the strength of agreement between a variable number of observers taking into account patient‐specific (age and gender) as well as rater‐specific (whether board certified in dermatology) characteristics. This suggested modelling κ as a function of these covariates. We propose the use of generalized estimating equations to estimate the weighted κ coefficient. This approach also accommodates unbalanced data which arise when some subjects are not judged by the same set of observers. Currently an estimate of overall κ for a simple unbalanced data set without covariates involving more than two observers is unavailable. In the inflammatory skin disease study none of the covariates were significantly associated with κ, thus enabling the calculation of an overall weighted κ for this unbalanced data set. In the second motivating example (multiple sclerosis), geographic location was significantly associated with κ. In addition we also compared the results of our method with current methods of testing for heterogeneity of weighted κ coefficients across strata (geographic location) that are available for balanced data sets.

Suggested Citation

  • R. Gonin & S. R. Lipsitz & G. M. Fitzmaurice & G. Molenberghs, 2000. "Regression modelling of weighted κ by using generalized estimating equations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 1-18.
  • Handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:1-18
    DOI: 10.1111/1467-9876.00175
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00175
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung‐Mo Lin & John M. Williamson & Stuart R. Lipsitz, 2003. "Calculating power for the comparison of dependent κ‐coefficients," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 391-404, October.
    2. Huiman X. Barnhart & John M. Williamson, 2002. "Weighted Least-Squares Approach for Comparing Correlated Kappa," Biometrics, The International Biometric Society, vol. 58(4), pages 1012-1019, December.
    3. Tsai, Miao-Yu & Wang, Jung-Feng & Wu, Jia-Ling, 2011. "Generalized estimating equations with model selection for comparing dependent categorical agreement data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2354-2362, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.