IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v48y1999i4p505-519.html
   My bibliography  Save this article

Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance

Author

Listed:
  • J. C. Gower
  • W. J. Krzanowski

Abstract

Many data sets in practice fit a multivariate analysis of variance (MANOVA) structure but are not consonant with MANOVA assumptions. One particular such data set from economics is described. This set has a 24 factorial design with eight variables measured on each individual, but the application of MANOVA seems inadvisable given the highly skewed nature of the data. To establish a basis for analysis, we examine the structure of distance matrices in the presence of a priori grouping of units and show how the total squared distance among the units of a multivariate data set can be partitioned according to the factors of an external classification. The partitioning is exactly analogous to that in the univariate analysis of variance. It therefore provides a framework for the analysis of any data set whose structure conforms to that of MANOVA, but which for various reasons cannot be analysed by this technique. Descriptive aspects of the technique are considered in detail, and inferential questions are tackled via randomization tests. This approach provides a satisfactory analysis of the economics data.

Suggested Citation

  • J. C. Gower & W. J. Krzanowski, 1999. "Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(4), pages 505-519.
  • Handle: RePEc:bla:jorssc:v:48:y:1999:i:4:p:505-519
    DOI: 10.1111/1467-9876.00168
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00168
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:kap:iaecre:v:15:y:2009:i:2:p:186-206 is not listed on IDEAS
    2. Vsevolozhskaya, O.A. & Greenwood, M.C. & Bellante, G.J. & Powell, S.L. & Lawrence, R.L. & Repasky, K.S., 2013. "Combining functions and the closure principle for performing follow-up tests in functional analysis of variance," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 175-184.
    3. Jun Li & Jifei Ban & Louis S. Santiago, 2011. "Nonparametric Tests for Homogeneity of Species Assemblages: A Data Depth Approach," Biometrics, The International Biometric Society, vol. 67(4), pages 1481-1488, December.
    4. Rathke, Alex A.T. & Rezende, Amaury J. & Watrin, Christoph, 2020. "Classification of transfer pricing systems across countries," International Economics, Elsevier, vol. 164(C), pages 151-167.
    5. Matthias Studer & Gilbert Ritschard & Alexis Gabadinho & Nicolas S. Müller, 2011. "Discrepancy Analysis of State Sequences," Sociological Methods & Research, , vol. 40(3), pages 471-510, August.
    6. W. J. Krzanowski, 2004. "Biplots for Multifactorial Analysis of Distance," Biometrics, The International Biometric Society, vol. 60(2), pages 517-524, June.
    7. Philip T. Reiss & M. Henry H. Stevens & Zarrar Shehzad & Eva Petkova & Michael P. Milham, 2010. "On Distance-Based Permutation Tests for Between-Group Comparisons," Biometrics, The International Biometric Society, vol. 66(2), pages 636-643, June.
    8. Marti J. Anderson, 2006. "Distance-Based Tests for Homogeneity of Multivariate Dispersions," Biometrics, The International Biometric Society, vol. 62(1), pages 245-253, March.
    9. W. J. Krzanowski, 2006. "Sensitivity in Metric Scaling and Analysis of Distance," Biometrics, The International Biometric Society, vol. 62(1), pages 239-244, March.
    10. Irène Gijbels & Marek Omelka, 2013. "Testing for Homogeneity of Multivariate Dispersions Using Dissimilarity Measures," Biometrics, The International Biometric Society, vol. 69(1), pages 137-145, March.
    11. Nickolay T. Trendafilov & Tsegay Gebrehiwot Gebru, 2016. "Recipes for sparse LDA of horizontal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 207-221, August.
    12. J. Fernando Vera & Rodrigo Macías, 2017. "Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 275-294, June.
    13. Łukasz Smaga & Jin‐Ting Zhang, 2020. "Linear hypothesis testing for weighted functional data with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 493-515, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:48:y:1999:i:4:p:505-519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.