IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v48y1999i3p345-362.html
   My bibliography  Save this article

Venezuelan Rainfall Data Analysed by Using a Bayesian Space–time Model

Author

Listed:
  • Bruno Sansó
  • Lelys Guenni

Abstract

We consider a set of data from 80 stations in the Venezuelan state of Guárico consisting of accumulated monthly rainfall in a time span of 16 years. The problem of modelling rainfall accumulated over fixed periods of time and recorded at meteorological stations at different sites is studied by using a model based on the assumption that the data follow a truncated and transformed multivariate normal distribution. The spatial correlation is modelled by using an exponentially decreasing correlation function and an interpolating surface for the means. Missing data and dry periods are handled within a Markov chain Monte Carlo framework using latent variables. We estimate the amount of rainfall as well as the probability of a dry period by using the predictive density of the data. We considered a model based on a full second‐degree polynomial over the spatial co‐ordinates as well as the first two Fourier harmonics to describe the variability during the year. Predictive inferences on the data show very realistic results, capturing the typical rainfall variability in time and space for that region. Important extensions of the model are also discussed.

Suggested Citation

  • Bruno Sansó & Lelys Guenni, 1999. "Venezuelan Rainfall Data Analysed by Using a Bayesian Space–time Model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 345-362.
  • Handle: RePEc:bla:jorssc:v:48:y:1999:i:3:p:345-362
    DOI: 10.1111/1467-9876.00157
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00157
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Richardson, 2022. "Spatial Generalized Linear Models with Non-Gaussian Translation Processes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 4-21, March.
    2. Sigrist, Fabio & Hirnschall, Christoph, 2019. "Grabit: Gradient tree-boosted Tobit models for default prediction," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 177-192.
    3. Sabyasachi Mukhopadhyay & Joseph O. Ogutu & Gundula Bartzke & Holly T. Dublin & Hans-Peter Piepho, 2019. "Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 369-393, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:48:y:1999:i:3:p:345-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.