IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v44y1995i4p473-485.html
   My bibliography  Save this article

Mixture Models for the Analysis of Repeated Count Data

Author

Listed:
  • Marijtje A. J. van Duijn
  • Ulf Böckenholt

Abstract

Repeated count data showing overdispersion are commonly analysed by using a Poisson model with varying intensity parameter, resulting in a mixed model. A mixed model with a gamma distribution for the Poisson parameter does not adequately fit a data set on 721 children's spelling errors. An alternative approach is a latent class or mixture model in which the distribution of the intensity parameter is a step function. This gives a solution with many classes that is difficult to interpret. A combination of the two models, resulting in a mixture model with two gamma distributions, however, fits the data very well. Moreover, it yields a substantively satisfactory interpretation: two heterogeneous classes of ‘good’ and ‘poor’ spelling children can be identified. Therefore, mixture models for the analysis of overdispersed repeated count data are proposed, where the counts have independent Poisson distributions conditional on the Poisson parameter whose distribution is a mixture of gamma distributions. Combining marginal maximum likelihood methods and the EM algorithm leads to straightforward estimations of the models, for which goodness‐of‐fit tests are also presented.

Suggested Citation

  • Marijtje A. J. van Duijn & Ulf Böckenholt, 1995. "Mixture Models for the Analysis of Repeated Count Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 473-485, December.
  • Handle: RePEc:bla:jorssc:v:44:y:1995:i:4:p:473-485
    DOI: 10.2307/2986139
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2986139
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2986139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Congdon, 1997. "Multilevel and Clustering Analysis of Health Outcomes in Small Areas," European Journal of Population, Springer;European Association for Population Studies, vol. 13(4), pages 305-338, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:44:y:1995:i:4:p:473-485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.