IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v32y1983i1p1-6.html
   My bibliography  Save this article

Estimating the Parameters of a Circle When Angular Differences are Known

Author

Listed:
  • Mark Berman

Abstract

This paper examines the problem of estimating the parameters of a circle when angular differences between successive data points are known. It is shown how this extra information reduces a model previously studied in the literature to a linear model with some interesting properties. The model is fitted to two data sets, the first arising in physics and the second in archaeology.

Suggested Citation

  • Mark Berman, 1983. "Estimating the Parameters of a Circle When Angular Differences are Known," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(1), pages 1-6, March.
  • Handle: RePEc:bla:jorssc:v:32:y:1983:i:1:p:1-6
    DOI: 10.2307/2348036
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2348036
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2348036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulric Lund, 2013. "Monte Carlo maximum likelihood circle fitting using circular density functions," Computational Statistics, Springer, vol. 28(2), pages 393-411, April.
    2. Liu, Xin & Yue, Rong-Xian & Wong, Weng Kee, 2018. "D-optimal design for the heteroscedastic Berman model on an arc," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 131-141.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:32:y:1983:i:1:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.