IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v26y1977i1p34-40.html
   My bibliography  Save this article

An Analytic Variable Selection Technique for Principal Component Regression

Author

Listed:
  • E. R. Mansfield
  • J. T. Webster
  • R. F. Gunst

Abstract

This paper presents an analytic technique for deleting predictor variables from a linear regression model when principal components of X'X are removed to adjust for multicollinearities in the data. The technique can be adapted to commonly used variable selection procedures such as backward elimination to eliminate redundant predictor variables without appreciably increasing the residual sum of squares. An analysis of the pitprop data of Jeffers (1967) is performed to illustrate the methods proposed in the paper.

Suggested Citation

  • E. R. Mansfield & J. T. Webster & R. F. Gunst, 1977. "An Analytic Variable Selection Technique for Principal Component Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 34-40, March.
  • Handle: RePEc:bla:jorssc:v:26:y:1977:i:1:p:34-40
    DOI: 10.2307/2346865
    as

    Download full text from publisher

    File URL: https://doi.org/10.2307/2346865
    Download Restriction: no

    File URL: https://libkey.io/10.2307/2346865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeid Eslamian & Mehdi Ghasemizadeh & Monireh Biabanaki & Mansoor Talebizadeh, 2010. "A Principal Component Regression Method for Estimating Low Flow Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2553-2566, September.
    2. Bauer, Jan O. & Drabant, Bernhard, 2023. "Regression based thresholds in principal loading analysis," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    3. Yukio Sadahiro & Yan Wang, 2018. "Configuration of sample points for the reduction of multicollinearity in regression models with distance variables," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 61(2), pages 295-317, September.
    4. Bauer, Jan O. & Drabant, Bernhard, 2021. "Principal loading analysis," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:26:y:1977:i:1:p:34-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.