IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i2p487-520.html
   My bibliography  Save this article

Exchangeable random measures for sparse and modular graphs with overlapping communities

Author

Listed:
  • Adrien Todeschini
  • Xenia Miscouridou
  • François Caron

Abstract

We propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process and naturally generalizes existing probabilistic models with overlapping block structure to the sparse regime. Our construction builds on vectors of completely random measures and has interpretable parameters, each node being assigned a vector representing its levels of affiliation to some latent communities. We develop methods for efficient simulation of this class of random graphs and for scalable posterior inference. We show that the approach proposed can recover interpretable structure of real world networks and can handle graphs with thousands of nodes and tens of thousands of edges.

Suggested Citation

  • Adrien Todeschini & Xenia Miscouridou & François Caron, 2020. "Exchangeable random measures for sparse and modular graphs with overlapping communities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(2), pages 487-520, April.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:2:p:487-520
    DOI: 10.1111/rssb.12363
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12363
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bikramjit Das & Tiandong Wang & Gengling Dai, 2022. "Asymptotic Behavior of Common Connections in Sparse Random Networks," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2071-2092, September.
    2. Caron, François & Panero, Francesca & Rousseau, Judith, 2023. "On sparsity, power-law, and clustering properties of graphex processes," LSE Research Online Documents on Economics 119794, London School of Economics and Political Science, LSE Library.
    3. Liu, Yirui & Qiao, Xinghao & Wang, Liying & Lam, Jessica, 2023. "EEGNN: edge enhanced graph neural network with a Bayesian nonparametric graph model," LSE Research Online Documents on Economics 119918, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:2:p:487-520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.