IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v82y2020i1p5-37.html
   My bibliography  Save this article

Multiscale inference and long‐run variance estimation in non‐parametric regression with time series errors

Author

Listed:
  • Marina Khismatullina
  • Michael Vogt

Abstract

We develop new multiscale methods to test qualitative hypotheses about the function m in the non‐parametric regression model Yt,T=m(t/T)+ɛt with time series errors ɛt. In time series applications, m represents a non‐parametric time trend. Practitioners are often interested in whether the trend m has certain shape properties. For example, they would like to know whether m is constant or whether it is increasing or decreasing in certain time intervals. Our multiscale methods enable us to test for such shape properties of the trend m. To perform the methods, we require an estimator of the long‐run error variance σ2=Σl=−∞∞cov(ε0,εl). We propose a new difference‐based estimator of σ2 for the case that {ɛt} belongs to the class of auto‐regressive AR(∞) processes. In the technical part of the paper, we derive asymptotic theory for the proposed multiscale test and the estimator of the long‐run error variance. The theory is complemented by a simulation study and an empirical application to climate data.

Suggested Citation

  • Marina Khismatullina & Michael Vogt, 2020. "Multiscale inference and long‐run variance estimation in non‐parametric regression with time series errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 5-37, February.
  • Handle: RePEc:bla:jorssb:v:82:y:2020:i:1:p:5-37
    DOI: 10.1111/rssb.12347
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12347
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marina Khismatullina & Michael Vogt, 2022. "Multiscale Comparison of Nonparametric Trend Curves," Papers 2209.10841, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:82:y:2020:i:1:p:5-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.