IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i1p75-99.html
   My bibliography  Save this article

An omnibus non‐parametric test of equality in distribution for unknown functions

Author

Listed:
  • Alex Luedtke
  • Marco Carone
  • Mark J. van der Laan

Abstract

We present a novel family of non‐parametric omnibus tests of the hypothesis that two unknown but estimable functions are equal in distribution when applied to the observed data structure. We developed these tests, which represent a generalization of the maximum mean discrepancy tests described by Gretton and colleagues, using recent developments from the higher order pathwise differentiability literature. Despite their complex derivation, the associated test statistics can be expressed quite simply as U‐statistics. We study the asymptotic behaviour of the proposed tests under the null hypothesis and under both fixed and local alternatives. We provide examples to which our tests can be applied and show that they perform well in a simulation study. As an important special case, our proposed tests can be used to determine whether an unknown function, such as the conditional average treatment effect, is equal to zero almost surely.

Suggested Citation

  • Alex Luedtke & Marco Carone & Mark J. van der Laan, 2019. "An omnibus non‐parametric test of equality in distribution for unknown functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 75-99, February.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:1:p:75-99
    DOI: 10.1111/rssb.12299
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12299
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kara E. Rudolph & Jonathan Levy & Mark J. van der Laan, 2021. "Transporting stochastic direct and indirect effects to new populations," Biometrics, The International Biometric Society, vol. 77(1), pages 197-211, March.
    2. Bing Li & Constantine Gatsonis & Issa J. Dahabreh & Jon A. Steingrimsson, 2023. "Estimating the area under the ROC curve when transporting a prediction model to a target population," Biometrics, The International Biometric Society, vol. 79(3), pages 2382-2393, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:1:p:75-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.