IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i1p45-74.html
   My bibliography  Save this article

Multiple testing with the structure‐adaptive Benjamini–Hochberg algorithm

Author

Listed:
  • Ang Li
  • Rina Foygel Barber

Abstract

In multiple‐testing problems, where a large number of hypotheses are tested simultaneously, false discovery rate (FDR) control can be achieved with the well‐known Benjamini–Hochberg procedure, which a(0,1]dapts to the amount of signal in the data, under certain distributional assumptions. Many modifications of this procedure have been proposed to improve power in scenarios where the hypotheses are organized into groups or into a hierarchy, as well as other structured settings. Here we introduce the ‘structure‐adaptive Benjamini–Hochberg algorithm’ (SABHA) as a generalization of these adaptive testing methods. The SABHA method incorporates prior information about any predetermined type of structure in the pattern of locations of the signals and nulls within the list of hypotheses, to reweight the p‐values in a data‐adaptive way. This raises the power by making more discoveries in regions where signals appear to be more common. Our main theoretical result proves that the SABHA method controls the FDR at a level that is at most slightly higher than the target FDR level, as long as the adaptive weights are constrained sufficiently so as not to overfit too much to the data—interestingly, the excess FDR can be related to the Rademacher complexity or Gaussian width of the class from which we choose our data‐adaptive weights. We apply this general framework to various structured settings, including ordered, grouped and low total variation structures, and obtain the bounds on the FDR for each specific setting. We also examine the empirical performance of the SABHA method on functional magnetic resonance imaging activity data and on gene–drug response data, as well as on simulated data.

Suggested Citation

  • Ang Li & Rina Foygel Barber, 2019. "Multiple testing with the structure‐adaptive Benjamini–Hochberg algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 45-74, February.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:1:p:45-74
    DOI: 10.1111/rssb.12298
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12298
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    2. Zhaoyang Tian & Kun Liang & Pengfei Li, 2021. "A powerful procedure that controls the false discovery rate with directional information," Biometrics, The International Biometric Society, vol. 77(1), pages 212-222, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:1:p:45-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.