IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i2p433-452.html
   My bibliography  Save this article

Testing for marginal linear effects in quantile regression

Author

Listed:
  • Huixia Judy Wang
  • Ian W. McKeague
  • Min Qian

Abstract

The paper develops a new marginal testing procedure to detect significant predictors that are associated with the conditional quantiles of a scalar response. The idea is to fit the marginal quantile regression on each predictor one at a time, and then to base the test on the t‐statistics that are associated with the most predictive predictors. A resampling method is devised to calibrate this test statistic, which has non‐regular limiting behaviour due to the selection of the most predictive variables. Asymptotic validity of the procedure is established in a general quantile regression setting in which the marginal quantile regression models can be misspecified. Even though a fixed dimension is assumed to derive the asymptotic results, the test proposed is applicable and computationally feasible for large dimensional predictors. The method is more flexible than existing marginal screening test methods based on mean regression and has the added advantage of being robust against outliers in the response. The approach is illustrated by using an application to a human immunodeficiency virus drug resistance data set.

Suggested Citation

  • Huixia Judy Wang & Ian W. McKeague & Min Qian, 2018. "Testing for marginal linear effects in quantile regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 433-452, March.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:2:p:433-452
    DOI: 10.1111/rssb.12258
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12258
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songqiao Tang & Huiyu Wang & Guanao Yan & Lixin Zhang, 2023. "Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(2), pages 149-179, February.
    2. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    3. Zhan Liu & Xiaoluo Zhao & Yingli Pan, 2023. "Communication-efficient distributed estimation for high-dimensional large-scale linear regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(4), pages 455-485, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:2:p:433-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.