IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i1p199-217.html
   My bibliography  Save this article

Expectation propagation in the large data limit

Author

Listed:
  • Guillaume Dehaene
  • Simon Barthelmé

Abstract

Expectation propagation (EP) is a widely successful algorithm for variational inference. EP is an iterative algorithm used to approximate complicated distributions, typically to find a Gaussian approximation of posterior distributions. In many applications of this type, EP performs extremely well. Surprisingly, despite its widespread use, there are very few theoretical guarantees on Gaussian EP, and it is quite poorly understood. To analyse EP, we first introduce a variant of EP: averaged EP, which operates on a smaller parameter space. We then consider averaged EP and EP in the limit of infinite data, where the overall contribution of each likelihood term is small and where posteriors are almost Gaussian. In this limit, we prove that the iterations of both averaged EP and EP are simple: they behave like iterations of Newton's algorithm for finding the mode of a function. We use this limit behaviour to prove that EP is asymptotically exact, and to obtain other insights into the dynamic behaviour of EP, e.g. that it may diverge under poor initialization exactly like Newton's method. EP is a simple algorithm to state, but a difficult one to study. Our results should facilitate further research into the theoretical properties of this important method.

Suggested Citation

  • Guillaume Dehaene & Simon Barthelmé, 2018. "Expectation propagation in the large data limit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 199-217, January.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:199-217
    DOI: 10.1111/rssb.12241
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12241
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:199-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.