IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i1p177-198.html
   My bibliography  Save this article

Another look at distance‐weighted discrimination

Author

Listed:
  • Boxiang Wang
  • Hui Zou

Abstract

Distance‐weighted discrimination (DWD) is a modern margin‐based classifier with an interesting geometric motivation. It was proposed as a competitor to the support vector machine (SVM). Despite many recent references on DWD, DWD is far less popular than the SVM, mainly because of computational and theoretical reasons. We greatly advance the current DWD methodology and its learning theory. We propose a novel thrifty algorithm for solving standard DWD and generalized DWD, and our algorithm can be several hundred times faster than the existing state of the art algorithm based on second‐order cone programming. In addition, we exploit the new algorithm to design an efficient scheme to tune generalized DWD. Furthermore, we formulate a natural kernel DWD approach in a reproducing kernel Hilbert space and then establish the Bayes risk consistency of the kernel DWD by using a universal kernel such as the Gaussian kernel. This result solves an open theoretical problem in the DWD literature. A comparison study on 16 benchmark data sets shows that data‐driven generalized DWD consistently delivers higher classification accuracy with less computation time than the SVM.

Suggested Citation

  • Boxiang Wang & Hui Zou, 2018. "Another look at distance‐weighted discrimination," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 177-198, January.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:177-198
    DOI: 10.1111/rssb.12244
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12244
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Martin & Sona Taheri & Mali Abdollahian, 2024. "Optimizing Ensemble Learning to Reduce Misclassification Costs in Credit Risk Scorecards," Mathematics, MDPI, vol. 12(6), pages 1-15, March.
    2. Hayley Randall & Andreas Artemiou & Xingye Qiao, 2021. "Sufficient dimension reduction based on distance‐weighted discrimination," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(4), pages 1186-1211, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:1:p:177-198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.