IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i5p1001-1024.html
   My bibliography  Save this article

Estimation of extreme quantiles for functions of dependent random variables

Author

Listed:
  • Jinguo Gong
  • Yadong Li
  • Liang Peng
  • Qiwei Yao

Abstract

type="main" xml:id="rssb12103-abs-0001"> We propose a new method for estimating the extreme quantiles for a function of several dependent random variables. In contrast with the conventional approach based on extreme value theory, we do not impose the condition that the tail of the underlying distribution admits an approximate parametric form, and, furthermore, our estimation makes use of the full observed data. The method proposed is semiparametric as no parametric forms are assumed on the marginal distributions. But we select appropriate bivariate copulas to model the joint dependence structure by taking advantage of the recent development in constructing large dimensional vine copulas. Consequently a sample quantile resulting from a large bootstrap sample drawn from the fitted joint distribution is taken as the estimator for the extreme quantile. This estimator is proved to be consistent under the regularity conditions on the closeness between a quantile set and its truncated set, and the empirical approximation for the truncated set. The simulation results lend further support to the reliable and robust performance of the method proposed. The method is further illustrated by a real world example in backtesting financial risk models.

Suggested Citation

  • Jinguo Gong & Yadong Li & Liang Peng & Qiwei Yao, 2015. "Estimation of extreme quantiles for functions of dependent random variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 1001-1024, November.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:5:p:1001-1024
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2015.77.issue-5
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    2. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2017. "Extreme M-quantiles as risk measures: From L1 to Lp optimization," TSE Working Papers 17-841, Toulouse School of Economics (TSE).
    3. Laurent Gardes & Stéphane Girard & Gilles Stupfler, 2020. "Beyond tail median and conditional tail expectation: Extreme risk estimation using tail Lp‐optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 922-949, September.
    4. Maume-Deschamps, V. & Rullière, D. & Usseglio-Carleve, A., 2017. "Quantile predictions for elliptical random fields," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 1-17.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:5:p:1001-1024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.