IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i3p699-726.html
   My bibliography  Save this article

An h-likelihood method for spatial mixed linear models based on intrinsic auto-regressions

Author

Listed:
  • Somak Dutta
  • Debashis Mondal

Abstract

type="main" xml:id="rssb12084-abs-0001"> We consider sparse spatial mixed linear models, particularly those described by Besag and Higdon, and develop an h-likelihood method for their statistical inference. The method proposed allows for singular precision matrices, as it produces estimates that coincide with those from the residual maximum likelihood based on appropriate differencing of the data and has a novel approach to estimating precision parameters by a gamma linear model. Furthermore, we generalize the h-likelihood method to include continuum spatial variations by making explicit use of scaling limit connections between Gaussian intrinsic Markov random fields on regular arrays and the de Wijs process. Keeping various applications of spatial mixed linear models in mind, we devise a novel sparse conjugate gradient algorithm that allows us to achieve fast matrix-free statistical computations. We provide two applications. The first is an extensive analysis of an agricultural variety trial that brings forward various new aspects of nearest neighbour adjustment such as effects on statistical analyses to changes of scale and use of implicit continuum spatial formulation. The second application concerns an analysis of a large cotton field which gives a focus to matrix-free computations. The paper closes with some further considerations, such as applications to irregularly spaced data, use of the parametric bootstrap and some generalizations to the Gaussian Matérn mixed effect models.

Suggested Citation

  • Somak Dutta & Debashis Mondal, 2015. "An h-likelihood method for spatial mixed linear models based on intrinsic auto-regressions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 699-726, June.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:3:p:699-726
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2015.77.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaojun Mao & Somak Dutta & Raymond K. W. Wong & Dan Nettleton, 2020. "Adjusting for Spatial Effects in Genomic Prediction," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(4), pages 699-718, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:3:p:699-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.