IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i3p581-615.html
   My bibliography  Save this article

Causal mediation analysis in the multilevel intervention and multicomponent mediator case

Author

Listed:
  • Cheng Zheng
  • Xiao-Hua Zhou

Abstract

type="main" xml:id="rssb12082-abs-0001"> Mediation analysis is an important tool in social and medical sciences as it helps to understand why an intervention works. The commonly used approach, given by Baron and Kenny, requires the strong assumption ‘sequential ignorability’ to yield causal interpretation. Ten Have and his colleagues proposed a rank preserving model to relax this assumption. However, the rank preserving model is restricted to the case with binary intervention and single mediator and needs another strong assumption ‘rank preserving’. We propose a new model that can relax this assumption and can handle both multilevel intervention and multicomponent mediators. As an estimating-equation-based method, our model can handle both correlated data with the generalized estimating equation and missing data with inverse probability weighting. Finally, our method can also be used in many other research settings, using mathematical models similar to mediation analysis, such as treatment compliance and post-randomized treatment component analysis. For the causal mediation model proposed, we first show identifiability for the parameters in the model. We then propose a semiparametric method for estimating the model parameters and derive asymptotic results for the estimators proposed. Simulation shows good performance for the proposed estimators in finite sample sizes. Finally, we apply the method proposed to two real world clinical studies: the college student drinking study, and the ‘Improving mood promoting access to collaborative treatment for late life depression’ study.

Suggested Citation

  • Cheng Zheng & Xiao-Hua Zhou, 2015. "Causal mediation analysis in the multilevel intervention and multicomponent mediator case," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 581-615, June.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:3:p:581-615
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2015.77.issue-3
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zheng & Xiao-Hua Zhou, 2017. "Causal mediation analysis on failure time outcome without sequential ignorability," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 533-559, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:3:p:581-615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.