IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i2p397-415.html
   My bibliography  Save this article

Semiparametric transformation models for causal inference in time-to-event studies with all-or-nothing compliance

Author

Listed:
  • Wen Yu
  • Kani Chen
  • Michael E. Sobel
  • Zhiliang Ying

Abstract

type="main" xml:id="rssb12072-abs-0001"> We consider causal inference in randomized survival studies with right-censored outcomes and all-or-nothing compliance, using semiparametric transformation models to estimate the distribution of survival times in treatment and control groups, conditionally on covariates and latent compliance type. Estimands depending on these distributions, e.g. the complier average causal effect, the complier effect on survival beyond time t and the complier quantile effect, are then considered. Maximum likelihood is used to estimate the parameters of the transformation models, using a specially designed expectation–maximization algorithm to overcome the computational difficulties that are created by the mixture structure of the problem and the infinite dimensional parameter in the transformation models. The estimators are shown to be consistent, asymptotically normal and semiparametrically efficient. Inferential procedures for the causal parameters are developed. A simulation study is conducted to evaluate the finite sample performance of the estimated causal parameters. We also apply our methodology to a randomized study conducted by the Health Insurance Plan of Greater New York to assess the reduction in breast cancer mortality due to screening.

Suggested Citation

  • Wen Yu & Kani Chen & Michael E. Sobel & Zhiliang Ying, 2015. "Semiparametric transformation models for causal inference in time-to-event studies with all-or-nothing compliance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 397-415, March.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:2:p:397-415
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2015.77.issue-2
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:2:p:397-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.