IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i1p131-148.html
   My bibliography  Save this article

Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference

Author

Listed:
  • Jessica Barrett
  • Peter Diggle
  • Robin Henderson
  • David Taylor-Robinson

Abstract

type="main" xml:id="rssb12060-abs-0001"> Random effects or shared parameter models are commonly advocated for the analysis of combined repeated measurement and event history data, including dropout from longitudinal trials. Their use in practical applications has generally been limited by computational cost and complexity, meaning that only simple special cases can be fitted by using readily available software. We propose a new approach that exploits recent distributional results for the extended skew normal family to allow exact likelihood inference for a flexible class of random-effects models. The method uses a discretization of the timescale for the time-to-event outcome, which is often unavoidable in any case when events correspond to dropout. We place no restriction on the times at which repeated measurements are made. An analysis of repeated lung function measurements in a cystic fibrosis cohort is used to illustrate the method.

Suggested Citation

  • Jessica Barrett & Peter Diggle & Robin Henderson & David Taylor-Robinson, 2015. "Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 131-148, January.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:131-148
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.77.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medina-Olivares, Victor & Calabrese, Raffaella & Crook, Jonathan & Lindgren, Finn, 2023. "Joint models for longitudinal and discrete survival data in credit scoring," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1457-1473.
    2. Kamaryn T. Tanner & Linda D. Sharples & Rhian M. Daniel & Ruth H. Keogh, 2021. "Dynamic survival prediction combining landmarking with a machine learning ensemble: Methodology and empirical comparison," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 3-30, January.
    3. Legoux, Renaud & Larocque, Denis & Laporte, Sandra & Belmati, Soraya & Boquet, Thomas, 2016. "The effect of critical reviews on exhibitors' decisions: Do reviews affect the survival of a movie on screen?," International Journal of Research in Marketing, Elsevier, vol. 33(2), pages 357-374.
    4. Xavier Piulachs & Ramon Alemany & Montserrat Guillen, 2016. "Joint Modelling of Survival and Emergency Medical Care Usage in Spanish Insureds Aged 65+," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:131-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.