IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v76y2014i5p833-859.html
   My bibliography  Save this article

Relevant statistics for Bayesian model choice

Author

Listed:
  • Jean-Michel Marin
  • Natesh S. Pillai
  • Christian P. Robert
  • Judith Rousseau

Abstract

type="main" xml:id="rssb12056-abs-0001"> The choice of the summary statistics that are used in Bayesian inference and in particular in approximate Bayesian computation algorithms has bearings on the validation of the resulting inference. Those statistics are nonetheless customarily used in approximate Bayesian computation algorithms without consistency checks. We derive necessary and sufficient conditions on summary statistics for the corresponding Bayes factor to be convergent, namely to select the true model asymptotically. Those conditions, which amount to the expectations of the summary statistics differing asymptotically under the two models, are quite natural and can be exploited in approximate Bayesian computation settings to infer whether or not a choice of summary statistics is appropriate, via a Monte Carlo validation.

Suggested Citation

  • Jean-Michel Marin & Natesh S. Pillai & Christian P. Robert & Judith Rousseau, 2014. "Relevant statistics for Bayesian model choice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(5), pages 833-859, November.
  • Handle: RePEc:bla:jorssb:v:76:y:2014:i:5:p:833-859
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.76.issue-5
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henri Pesonen & Umberto Simola & Alvaro Köhn‐Luque & Henri Vuollekoski & Xiaoran Lai & Arnoldo Frigessi & Samuel Kaski & David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Jukka Corander, 2023. "ABC of the future," International Statistical Review, International Statistical Institute, vol. 91(2), pages 243-268, August.
    2. Roxana Zeraati & Yan-Liang Shi & Nicholas A. Steinmetz & Marc A. Gieselmann & Alexander Thiele & Tirin Moore & Anna Levina & Tatiana A. Engel, 2023. "Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    4. Li, Cheng & Jiang, Wenxin, 2016. "On oracle property and asymptotic validity of Bayesian generalized method of moments," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 132-147.
    5. Sifat A Moon & Lee W Cohnstaedt & D Scott McVey & Caterina M Scoglio, 2019. "A spatio-temporal individual-based network framework for West Nile virus in the USA: Spreading pattern of West Nile virus," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    6. D.T. Frazier & G.M. Martin & C.P. Robert & J. Rousseau, 2016. "Asymptotic Properties of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 18/16, Monash University, Department of Econometrics and Business Statistics.
    7. Minerva Mukhopadhyay & Sourabh Bhattacharya, 2022. "Bayes factor asymptotics for variable selection in the Gaussian process framework," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 581-613, June.
    8. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    9. Kobayashi, Genya, 2014. "A transdimensional approximate Bayesian computation using the pseudo-marginal approach for model choice," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 167-183.
    10. D T Frazier & G M Martin & C P Robert & J Rousseau, 2018. "Asymptotic properties of approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 105(3), pages 593-607.
    11. David T. Frazier & Gael M. Martin & Christian P. Robert, 2015. "On Consistency of Approximate Bayesian Computation," Monash Econometrics and Business Statistics Working Papers 19/15, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:76:y:2014:i:5:p:833-859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.