IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v76y2014i1p265-295.html
   My bibliography  Save this article

Optimal designs for dose finding studies with an active control

Author

Listed:
  • Holger Dette
  • Christine Kiss,
  • Norbert Benda
  • Frank Bretz

Abstract

type="main" xml:id="rssb12030-abs-0001"> Dose finding studies often compare several doses of a new compound with a marketed standard treatment as an active control. In the past, however, research has focused mostly on experimental designs for placebo controlled dose finding studies. To the best of our knowledge, optimal designs for dose finding studies with an active control have not been considered so far. As the statistical analysis for an active controlled dose finding study can be formulated in terms of a mixture of two regression models, the related design problem is different from what has been investigated before in the literature. We present a rigorous approach to the problem of determining optimal designs for estimating the smallest dose achieving the same treatment effect as the active control. We determine explicitly the locally optimal designs for a broad class of models employed in such studies. We also discuss robust design strategies and determine related Bayesian and standardized minimax optimal designs. We illustrate the results by investigating alternative designs for a clinical trial which has recently appeared in a consulting project of one of the authors.

Suggested Citation

  • Holger Dette & Christine Kiss, & Norbert Benda & Frank Bretz, 2014. "Optimal designs for dose finding studies with an active control," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 265-295, January.
  • Handle: RePEc:bla:jorssb:v:76:y:2014:i:1:p:265-295
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2013.76.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shih-Hao Huang & Mong-Na Lo Huang & Kerby Shedden & Weng Kee Wong, 2017. "Optimal group testing designs for estimating prevalence with uncertain testing errors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1547-1563, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:76:y:2014:i:1:p:265-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.