New consistent and asymptotically normal parameter estimates for random‐graph mixture models
Author
Abstract
Suggested Citation
DOI: j.1467-9868.2011.01009.x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- C. Biernacki & J. Jacques & C. Keribin, 2023. "A Survey on Model-Based Co-Clustering: High Dimension and Estimation Challenges," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 332-381, July.
- Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
- Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Weighted stochastic block model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1365-1398, December.
- Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Pierre Barbillon & Sophie Donnet & Emmanuel Lazega & Avner Bar-Hen, 2017. "Stochastic block models for multiplex networks: an application to a multilevel network of researchers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 295-314, January.
- Bartolucci, Francesco & Marino, Maria Francesca & Pandolfi, Silvia, 2018. "Dealing with reciprocity in dynamic stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 86-100.
- Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Christophe Biernacki & Matthieu Marbac & Vincent Vandewalle, 2021. "Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(1), pages 129-157, April.
- Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
- Dragana M. Pavlović & Bryan R.L. Guillaume & Soroosh Afyouni & Thomas E. Nichols, 2020. "Multi‐subject stochastic blockmodels with mixed effects for adaptive analysis of individual differences in human brain network cluster structure," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 363-396, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:74:y:2012:i:1:p:3-35. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.