IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v70y2008i2p287-309.html
   My bibliography  Save this article

Binary models for marginal independence

Author

Listed:
  • Mathias Drton
  • Thomas S. Richardson

Abstract

Summary. Log‐linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log‐linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach that is taken is graphical and draws on analogies with multivariate Gaussian models for marginal independence. For the graphical model representation we use bidirected graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed by using a version of the iterated conditional fitting algorithm. Finally we consider combining these models with symmetry restrictions.

Suggested Citation

  • Mathias Drton & Thomas S. Richardson, 2008. "Binary models for marginal independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 287-309, April.
  • Handle: RePEc:bla:jorssb:v:70:y:2008:i:2:p:287-309
    DOI: 10.1111/j.1467-9868.2007.00636.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2007.00636.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2007.00636.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robin J. Evans & Thomas S. Richardson, 2013. "Marginal log-linear parameters for graphical Markov models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 743-768, September.
    2. Alberto Roverato, 2015. "Log-mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 627-648, June.
    3. Monia Lupparelli & Alberto Roverato, 2017. "Log-mean linear regression models for binary responses with an application to multimorbidity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 227-252, February.
    4. Boitani, Andrea & Punzo, Chiara, 2019. "Banks’ leverage behaviour in a two-agent new Keynesian model," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 347-359.
    5. Monia Lupparelli & Giovanni M. Marchetti & Wicher P. Bergsma, 2009. "Parameterizations and Fitting of Bi‐directed Graph Models to Categorical Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 559-576, September.
    6. Claudia Tarantola & Ioannis Ntzoufras, 2012. "Bayesian Analysis of Graphical Models of Marginal Independence for Three Way Contingency Tables," Quaderni di Dipartimento 172, University of Pavia, Department of Economics and Quantitative Methods.
    7. Kayvan Sadeghi & Alessandro Rinaldo, 2020. "Hierarchical models for independence structures of networks," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 439-457, August.
    8. Ntzoufras, Ioannis & Tarantola, Claudia, 2013. "Conjugate and conditional conjugate Bayesian analysis of discrete graphical models of marginal independence," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 161-177.
    9. Ioannis Ntzoufras & Claudia Tarantola, 2012. "Conjugate and Conditional Conjugate Bayesian Analysis of Discrete Graphical Models of Marginal Independence," Quaderni di Dipartimento 178, University of Pavia, Department of Economics and Quantitative Methods.
    10. Lorenza Rossi & Emilio Zanetti Chini, 2016. "Firms’ Dynamics and Business Cycle: New Disaggregated Data," DEM Working Papers Series 123, University of Pavia, Department of Economics and Management.
    11. Ioannis Ntzoufras & Claudia Tarantola & Monia Lupparelli, 2018. "Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log-Linear Marginal Models," DEM Working Papers Series 149, University of Pavia, Department of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:70:y:2008:i:2:p:287-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.