IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v67y2005i4p459-513.html
   My bibliography  Save this article

Local model uncertainty and incomplete‐data bias (with discussion)

Author

Listed:
  • John Copas
  • Shinto Eguchi

Abstract

Summary. Problems of the analysis of data with incomplete observations are all too familiar in statistics. They are doubly difficult if we are also uncertain about the choice of model. We propose a general formulation for the discussion of such problems and develop approximations to the resulting bias of maximum likelihood estimates on the assumption that model departures are small. Loss of efficiency in parameter estimation due to incompleteness in the data has a dual interpretation: the increase in variance when an assumed model is correct; the bias in estimation when the model is incorrect. Examples include non‐ignorable missing data, hidden confounders in observational studies and publication bias in meta‐analysis. Doubling variances before calculating confidence intervals or test statistics is suggested as a crude way of addressing the possibility of undetectably small departures from the model. The problem of assessing the risk of lung cancer from passive smoking is used as a motivating example.

Suggested Citation

  • John Copas & Shinto Eguchi, 2005. "Local model uncertainty and incomplete‐data bias (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 459-513, September.
  • Handle: RePEc:bla:jorssb:v:67:y:2005:i:4:p:459-513
    DOI: 10.1111/j.1467-9868.2005.00512.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2005.00512.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2005.00512.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Eftekhari Mahabadi & M. Ganjali, 2012. "An index of local sensitivity to non-ignorability for parametric survival models with potential non-random missing covariate: an application to the SEER cancer registry data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2327-2348, July.
    2. Niansheng Tang & Sy-Miin Chow & Joseph G. Ibrahim & Hongtu Zhu, 2017. "Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 875-903, December.
    3. Jiming Jiang & Thuan Nguyen & J. Sunil Rao, 2015. "The E-MS Algorithm: Model Selection With Incomplete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1136-1147, September.
    4. Xiaoyan Shi & Hongtu Zhu & Joseph G. Ibrahim, 2009. "Local Influence for Generalized Linear Models with Missing Covariates," Biometrics, The International Biometric Society, vol. 65(4), pages 1164-1174, December.
    5. Xavier de Luna & Mathias Lundin, 2014. "Sensitivity analysis of the unconfoundedness assumption with an application to an evaluation of college choice effects on earnings," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1767-1784, August.
    6. John Copas & Shinto Eguchi, 2010. "Likelihood for statistically equivalent models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 193-217, March.
    7. Kano, Yutaka & Takai, Keiji, 2011. "Analysis of NMAR missing data without specifying missing-data mechanisms in a linear latent variate model," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1241-1255, October.
    8. de Luna, Xavier & Lundin, Mathias, 2009. "Sensitivity analysis of the unconfoundedness assumption in observational studies," Working Paper Series 2009:12, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    9. Minna Genbäck & Elena Stanghellini & Xavier Luna, 2015. "Uncertainty intervals for regression parameters with non-ignorable missingness in the outcome," Statistical Papers, Springer, vol. 56(3), pages 829-847, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:67:y:2005:i:4:p:459-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.