IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v67y2005i1p135-155.html
   My bibliography  Save this article

Analysis of longitudinal data unbalanced over time

Author

Listed:
  • Wenzheng Huang
  • Garrett M. Fitzmaurice

Abstract

Summary. The paper considers modelling, estimating and diagnostically verifying the response process generating longitudinal data, with emphasis on association between repeated meas‐ures from unbalanced longitudinal designs. Our model is based on separate specifications of the moments for the mean, standard deviation and correlation, with different components possibly sharing common parameters. We propose a general class of correlation structures that comprise random effects, measurement errors and a serially correlated process. These three elements are combined via flexible time‐varying weights, whereas the serial correlation can depend flexibly on the mean time and lag. When the measurement schedule is independent of the response process, our estimation procedure yields consistent and asymptotically normal estimates for the mean parameters even when the standard deviation and correlation are misspecified, and for the standard deviation parameters even when the correlation is misspecified. A generic diagnostic method is developed for verifying the models for the mean, standard deviation and, in particular, the correlation, which is applicable even when the data are severely unbalanced. The methodology is illustrated by an analysis of data from a longitudinal study that was designed to characterize pulmonary growth in girls.

Suggested Citation

  • Wenzheng Huang & Garrett M. Fitzmaurice, 2005. "Analysis of longitudinal data unbalanced over time," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 135-155, February.
  • Handle: RePEc:bla:jorssb:v:67:y:2005:i:1:p:135-155
    DOI: 10.1111/j.1467-9868.2005.00492.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9868.2005.00492.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9868.2005.00492.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico A. Colosimo & Maria Arlene Fausto & Marta Afonso Freitas & Jorge Andrade Pinto, 2012. "Practical modeling strategies for unbalanced longitudinal data analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(9), pages 2005-2013, May.
    2. Shin, Hyejin, 2008. "An extension of Fisher's discriminant analysis for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1191-1216, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:67:y:2005:i:1:p:135-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.