IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v66y2004i2p429-446.html
   My bibliography  Save this article

Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging

Author

Listed:
  • C. G. Wager
  • B. A. Coull
  • N. Lange

Abstract

Summary. Pharmacological experiments in brain microscopy study patterns of cellular activ‐ ation in response to psychotropic drugs for connected neuroanatomic regions. A typical ex‐ perimental design produces replicated point patterns having highly complex spatial variability. Modelling this variability hierarchically can enhance the inference for comparing treatments. We propose a semiparametric formulation that combines the robustness of a nonparametric kernel method with the efficiency of likelihood‐based parameter estimation. In the convenient framework of a generalized linear mixed model, we decompose pattern variation by kriging the intensities of a hierarchically heterogeneous spatial point process. This approximation entails discretizing the inhomogeneous Poisson likelihood by Voronoi tiling of augmented point patterns. The resulting intensity‐weighted log‐linear model accommodates spatial smoothing through a reduced rank penalized linear spline. To correct for anatomic distortion between subjects, we interpolate point locations via an isomorphic mapping so that smoothing occurs relative to common neuroanatomical atlas co‐ordinates. We propose a criterion for choosing the degree and spatial locale of smoothing based on truncating the ordered set of smoothing covariates to minimize residual extra‐dispersion. Additional spatial covariates, experimental design factors, hierarchical random effects and intensity functions are readily accommodated in the linear predictor, enabling comprehensive analyses of the salient properties underlying replicated point patterns. We illustrate our method through application to data from a novel study of drug effects on neuronal activation patterns in the brain of rats.

Suggested Citation

  • C. G. Wager & B. A. Coull & N. Lange, 2004. "Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 429-446, May.
  • Handle: RePEc:bla:jorssb:v:66:y:2004:i:2:p:429-446
    DOI: 10.1046/j.1369-7412.2003.05285.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1046/j.1369-7412.2003.05285.x
    Download Restriction: no

    File URL: https://libkey.io/10.1046/j.1369-7412.2003.05285.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Anton-Sanchez & Pedro Larrañaga & Ruth Benavides-Piccione & Isabel Fernaud-Espinosa & Javier DeFelipe & Concha Bielza, 2017. "Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-14, June.
    2. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
    3. Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
    4. E. Andres Houseman & Brent Coull & James Shine, 2004. "A Nonstationary Negative Binomial Time Series with Time-Dependent Covariates: Enterococcus Counts in Boston Harbor," Harvard University Biostatistics Working Paper Series 1017, Berkeley Electronic Press.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:66:y:2004:i:2:p:429-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.