IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v65y2003i1p299-315.html
   My bibliography  Save this article

Conditional statistical inference and quantification of relevance

Author

Listed:
  • Rolf Sundberg

Abstract

Summary. We argue that it can be fruitful to take a predictive view on notions such as the precision of a point estimator and the confidence of an interval estimator in frequentist inference. This predictive approach has implications for conditional inference, because it immediately allows a quantification of the concept of relevance for conditional inference. Conditioning on an ancillary statistic makes inference more relevant in this sense, provided that the ancillary is a precision index. Not all ancillary statistics satisfy this demand. We discuss the problem of choice between alternative ancillary statistics. The approach also has implications for the best choice of variance estimator, taking account of correlations with the squared error of estimation itself. The theory is illustrated by numerous examples, many of which are classical.

Suggested Citation

  • Rolf Sundberg, 2003. "Conditional statistical inference and quantification of relevance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 299-315, February.
  • Handle: RePEc:bla:jorssb:v:65:y:2003:i:1:p:299-315
    DOI: 10.1111/1467-9868.00387
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00387
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Lane, 2020. "Adaptive designs for optimal observed Fisher information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1029-1058, September.
    2. Grant Hillier & Giovanni Forchini, 2004. "Ill-posed Problems and Instruments' Weakness," Econometric Society 2004 Australasian Meetings 357, Econometric Society.
    3. Ben Weidmann & Luke Miratrix, 2021. "Missing, presumed different: Quantifying the risk of attrition bias in education evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 732-760, April.
    4. Pashley Nicole E. & Basse Guillaume W. & Miratrix Luke W., 2021. "Conditional as-if analyses in randomized experiments," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 264-284, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:1:p:299-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.